We can pretend that penguins wasn’t tidy and that it looked instead like untidy_penguins below, where body_mass_g was recorded separately for male, female, and NAsex penguins.
# A tibble: 344 × 9
species island bill_length_mm bill_dept…¹ flipp…² year male female `NA`
<fct> <fct> <dbl> <dbl> <int> <int> <int> <int> <int>
1 Adelie Torgersen 39.1 18.7 181 2007 3750 NA NA
2 Adelie Torgersen 39.5 17.4 186 2007 NA 3800 NA
3 Adelie Torgersen 40.3 18 195 2007 NA 3250 NA
4 Adelie Torgersen NA NA NA 2007 NA NA NA
5 Adelie Torgersen 36.7 19.3 193 2007 NA 3450 NA
6 Adelie Torgersen 39.3 20.6 190 2007 3650 NA NA
7 Adelie Torgersen 38.9 17.8 181 2007 NA 3625 NA
8 Adelie Torgersen 39.2 19.6 195 2007 4675 NA NA
9 Adelie Torgersen 34.1 18.1 193 2007 NA NA 3475
10 Adelie Torgersen 42 20.2 190 2007 NA NA 4250
# … with 334 more rows, and abbreviated variable names ¹bill_depth_mm,
# ²flipper_length_mm
# A tibble: 1,032 × 8
species island bill_length_mm bill_depth_mm flipper_…¹ year sex body_…²
<fct> <fct> <dbl> <dbl> <int> <int> <chr> <int>
1 Adelie Torgersen 39.1 18.7 181 2007 male 3750
2 Adelie Torgersen 39.1 18.7 181 2007 fema… NA
3 Adelie Torgersen 39.1 18.7 181 2007 NA NA
4 Adelie Torgersen 39.5 17.4 186 2007 male NA
5 Adelie Torgersen 39.5 17.4 186 2007 fema… 3800
6 Adelie Torgersen 39.5 17.4 186 2007 NA NA
7 Adelie Torgersen 40.3 18 195 2007 male NA
8 Adelie Torgersen 40.3 18 195 2007 fema… 3250
9 Adelie Torgersen 40.3 18 195 2007 NA NA
10 Adelie Torgersen NA NA NA 2007 male NA
# … with 1,022 more rows, and abbreviated variable names ¹flipper_length_mm,
# ²body_mass_g